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Abstract 

Background:  The broad application of high-resolution chromosome detection technology in prenatal diagnosis has 
identified copy number loss (CNL) involving autosomal dominant (AD) genes in certain fetuses. Exon sequencing of 
fetuses exhibiting structural anomalies yields diagnostic information in up to 20% of cases. However, there is currently 
no relevant literature about the genetic origin and pregnancy outcome of CNL involving AD genes in fetuses without 
structural abnormalities.

Results:  This was a prospective study involving pregnant women who underwent amniocentesis for fetal copy 
number variation sequencing (CNVseq). Detection of parent-of-origin was suggested in cases of samples with CNL 
involving AD genes and the pregnancy outcome was monitored. Amniotic fluid samples from 24,844 fetuses without 
structural abnormalities were successfully tested via CNVseq. The results showed that 134 fetuses (0.5%) had small 
CNL (< 10 Mb) containing AD genes, after excluding microdeletion and microduplication syndrome and polymor-
phisms. By monitoring the pregnancy outcomes of the 134 fetuses, we found that 104 (77.6%) were good, 13 (9.7%) 
were adverse, and 17 (12.7%) pregnant women voluntarily chose to terminate pregnancy. Of the 13 fetuses with 
adverse pregnancy outcomes, only 2 fetuses had phenotypes consistent with those of diseases caused by AD genes 
involved in CNL.

Conclusions:  The overall prognosis for fetuses without family history or structural abnormalities but with small CNL 
containing AD genes detected during pregnancy is good. The genetic origin, overlap status of established haploinsuf-
ficient gene and/or region, size of the CNL, and genetic mode may affect the pathogenicity of the CNL.

Keywords:  Fetus, CNV: Copy number variation, Invasive prenatal diagnosis, CNL: Copy number loss, AD: Autosomal 
dominant, Gene, Prognosis
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Background
Prenatal ultrasound is an established screening tool in 
obstetrics that provides increasingly high resolution to 
identify fetal structural abnormalities in approximately 
5% of pregnancies [1]. The identification of chromosomal 
or genetic abnormalities is an important factor affecting 

fetal prognosis. Karyotyping and chromosomal micro-
array analysis (CMA) reveal that approximately 40% 
of these fetuses have genomic copy number variations 
(CNVs). However, close to 60% fail to receive a genomic 
diagnosis with which to inform prognosis and initiate 
genetic counseling [2]. In recent years, the implementa-
tion of prenatal exon sequencing (ES) in clinical practice 
to evaluate fetuses with structural anomalies has vastly 
improved the delineation of prognosis, providing clinical 
utility for a deeper understanding of the pathogenesis of 
prenatal genetic disorders. Prenatal ES in fetal structural 
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anomalies yields diagnostic information in up to 20% of 
cases [3].

In some prenatal diagnostic centers, up to 74.8 – 96.8% 
of the fetuses undergoing invasive prenatal diagnosis did 
not exhibit structural abnormalities before amniocente-
sis [4–6]. Other indications for prenatal diagnosis include 
advanced maternal age, increased risk of a screening test, 
ultrasound soft markers, and maternal request; the main 
purpose is to detect genomic CNV, including aneuploidy 
and unbalanced chromosomal rearrangements. At pre-
sent, high-resolution chromosome detection techniques, 
such as CMA and copy number variation sequencing 
(CNVseq), are widely used in fetal chromosome detec-
tion [7–12]. Compared with conventional karyotyping, 
CMA and CNVseq have an additional detection rate of 
1–6% for clinically significant CNVs [6, 7, 13, 14] and also 
identify copy number loss (CNL) involving autosomal 
dominant (AD) genes.

For fetuses without ultrasound structural abnormali-
ties, if high-resolution chromosome detection tech-
niques indicate that there are CNL including AD genes in 
fetuses during pregnancy, what are their genetic origins 
and pregnancy outcomes? At present, such literature is 
lacking. This study sought to analyze the above contents 
to provide useful information for prenatal genetic coun-
seling of mothers carrying fetuses with CNL.

Results
From February 2017 to June 2020, amniotic fluid sam-
ples from 24 844 fetuses without structural abnormali-
ties were successfully analyzed via CNVseq. The results 
showed that 134 fetuses (0.5%) had CNL involving AD 
genes (< 10  Mb) after excluding microdeletion and 
microduplication syndrome (MMS) and polymorphisms; 
the average size of the CNL was 1.11 Mb, CNL involved 
a total of 202 AD genes, covering 128 different AD 
genes. Among the 134 samples, 37 carried two or more 
AD genes and one contained seven different AD genes. 
Among the 128 different genes, 23 (18.0%) were detected 
in multiple samples; NIPA1 was the most common 
gene (25 samples), followed by CTNNA3 (10 samples). 
According to the genomic location of genes (Fig. 1), these 
128 genes were distributed across nearly all autosomes, 
with the highest number found on chromosome 15 (27 
genes), followed by chromosomes 1 and 10 (23 genes, 
respectively); no CNL involving AD genes was found on 
chromosomes 14 and 19. The genomic positions, occur-
rences, genetic origins, and genetic modes of all 128 
genes are summarized in the Supplementary Table.

Our follow-up on the pregnancy outcomes of the 134 
fetuses found that 104 (77.6%) had good outcomes, 13 
(9.7%) had adverse outcomes, and 17 (12.7%) pregnant 
women voluntarily chose termination of pregnancy 

(TOP). Details of the fetuses with adverse pregnancy out-
comes are summarized in Table 1. CNL of the 134 sam-
ples were divided into inherited, de novo, and unknown 
according to their genetic origins. Then, the CNL overlap 
of established haploinsufficient (HI) gene and/or region 
(abbreviated as overlap of HI), average size of CNL, and 
outcome of pregnancy in each group were analyzed. The 
results showed that the number of samples that over-
lap of HI was the greatest, and the average size of CNL 
was the largest in the de novo group. Compared with 
the de novo group, the proportion of normal infants in 
the inherited group was higher (Pearson’s Chi-squared 
test, P = 0.000); the proportion of abnormal pregnancy 
outcomes was lower, but the difference was not statisti-
cally significant (Yates’ continuity correction of the Chi-
squared test, P > 0.05). In the three groups, the rate of 
voluntary TOP in the de novo group was much higher 
than that in the other two groups (Yates’ continuity cor-
rection of the Chi-squared test, P = 0.000). These details 
are presented in Table 2.

Based on content in the Online Mendelian Inheritance 
in Man® database (OMIM, https://​omim.​org/), we ana-
lyzed information regarding gene pathogenicity. Among 
the 128 different genes, 65 (50.8%) exhibited multiple 
genetic modes. A total of 202 AD genes were detected in 
134 samples, which were divided into inherited, de novo, 
and unknown origin groups. Our results showed that, in 
the de novo group, the proportion of genes with multi-
ple genetic modes was higher than that in the inherited 
group. The specific information is listed in Table 3.

CNL were divided into < 1  Mb, 1–3  Mb, and > 3  Mb 
groups according to fragment size. The results showed 
that the number of samples with CNL < 1 Mb accounted 
for the largest proportion (73.1%). The smaller the frag-
ment, higher the proportion of normal pregnancy out-
comes and lower the proportion of abnormal pregnancy 
outcomes, but there was no significant difference (Fish-
er’s exact test, Yates’ continuity correction of the Chi-
squared test and Pearson’s Chi-squared test, P > 0.05). 
The relevant information is shown in Table 4.

Discussion
In the nearly 60 years since prenatal diagnosis of genetic 
diseases was first proposed, the field has made great 
progress. While invasive fetal sampling technology has 
improved, the technological progress of cytogenetics and 
molecular biology has expanded the scope of genetic dis-
ease diagnosis even further. Presently, chorionic villus 
sampling and amniocentesis can be used to diagnose the 
majority of diseases with known genetic causes; moreo-
ver, the genomes and exomes of abnormal fetuses can be 
sequenced to help identify potential genetic vulnerabili-
ties [15–19].

https://omim.org/
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Theoretically, full gene, single-exon, or multi-exon 
deletion is often assumed to disrupt gene function by 
causing the complete absence of the gene product due to 
lack of transcription or nonsense-mediated decay of an 
altered transcript as identified by very strong evidence of 
pathogenicity in the ACMG/AMP guidelines [20]. How-
ever, our follow-up on the pregnancy outcomes of the 

134 fetuses in this study found that 13 (9.7%) had abnor-
mal phenotypes and only 2 had abnormal phenotypes 
consistent with the phenotypes of diseases caused by AD 
genes. Most of the women (77.6%) had good pregnancy 
outcomes, possibly because CNL in these subjects did 
not affect the functional region of the AD gene, partial 
exon deletion did not affect the protein integrity, loss of 

Fig. 1  The genomic location of genes. The red Arabic numerals represent the number of genes located in the genome.
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Table 1  CNL involving AD genes: Information on 13 fetuses with adverse pregnancy outcomes

AD, Autosomal dominant, AR,Autosomal recessive

Case number Indications of 
amniocentesis

Location Size (Mb) Gene Phenotype and 
Inheritance

Origin Pregnancy
outcomes

A1 ultrasound soft markers 6p25.3p25.2 1.72 FOXC1 Anterior segment dysgene-
sis 3, multiple subtypes AD; 
Axenfeld-Rieger syndrome, 
type 3 AD

De novo Facial abnormalities, Poste-
rior fossa extraaxial cyst

A2 advanced maternal age 6q27 1.22 ERMARD Periventricular nodular 
heterotopia 6 AD

Maternal Ventricular septal defect 
7 mm

A3 increased risk of a screening 
test

11q14.1q14.2 8.26 ALG8;
TENM4

Congenital disorder of 
glycosylation, type Ih AR; 
Polycystic liver disease 3 
with or without kidney 
cysts AD;
Essential tremor, hereditary, 
5 AD

Unknown Multiple malformations

A4 ultrasound soft markers 10q21.3 0.38 CTNNA3 Arrhythmogenic right ven-
tricular dysplasia, familial, 
13 AD

Unknown Duodenal stenosis and 
atresia

A5 increased risk of a screening 
test

4q25 0.22 SGMS2 Calvarial doughnut lesions 
with bone fragility with or 
without spondylometaphy-
seal dysplasia AD

Paternal Hypospadias

A6 advanced maternal age 4q24 0.62 PPP3CA Arthrogryposis, cleft 
palate, craniosynostosis, 
and impaired intellectual 
development AD; Devel-
opmental and epileptic 
encephalopathy 91 AD

Unknown Hydronephrosis

A7 increased risk of a screening 
test

18q22.3q23 4.18 TSHZ1 Aural atresia, congenital AD De novo Developmental retardation

A8 advanced maternal age 11p15.1p14.3 3.26 ANO5 Gnathodiaphyseal dysplasia 
AD; Miyoshi muscular 
dystrophy 3 AR; Muscular 
dystrophy, limb-girdle, 
autosomal recessive 12 AR

De novo Brain glioma

A9 increased risk of a screening 
test

11p14.3 0.16 ANO5 Gnathodiaphyseal dysplasia 
AD; Miyoshi muscular 
dystrophy 3 AR; Muscular 
dystrophy, limb-girdle, 
autosomal recessive 12 AR

Unknown Multiple malformations

A10 advanced maternal age 5q11.2 0.22 PDE4D Acrodysostosis 2, with or 
without hormone resist-
ance AD

Unknown Deaf

A11 ultrasound soft markers 3p26.1 0.34 ITPR1 Gillespie syndrome AD, AR;
Spinocerebellar ataxia 15 
AD;
Spinocerebellar ataxia 29, 
congenital nonprogres-
sive AD

Paternal Short limbs

A12 increased risk of a screening 
test

15q11.2 0.32 NIPA1 Spastic paraplegia 6, auto-
somal dominant AD

Paternal Spontaneous abortion

A13 increased risk of a screening 
test

20q13.33 0.14 CHRNA4;
KCNQ2

{Nicotine addiction, suscep-
tibility to};
Epilepsy, nocturnal frontal 
lobe, 1 AD;
Developmental and epilep-
tic encephalopathy 7 AD;
Myokymia AD;
Seizures, benign neonatal, 
1 AD

Unknown Epilepsy
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function was not the pathogenic mechanism of the dis-
ease, loss of function was at the 3’ terminal, or the gene 
had multiple transcripts [20–23]. In addition, certain 
autosomal dominant genetic diseases have incomplete 

penetrance, late onset age, and variable expressivity 
[24–26].

The results of this study showed that in the de novo 
group, the proportion of samples that overlap of HI was 

Table 2  CNV information and pregnancy outcome of CNVs grouped by parent-of-origin

CNV, copynumbervariation; HI, Haploinsufficiency; TOP, termination of pregnancy

Group Number of 
samples, n (%)

Overlap of 
HI, n (%)

Average size of 
CNV(Mb)

Outcome of pregnancy, n (%)

Normal infants Abnormal 
pregnancy 
outcomes

Voluntary TOP

  Detection of parent-of-origin 82
(61.2%)

25
(30.5%)

1.07 62
(75.6%)

7
(8.5%)

13
(15.9%)

  Inherited 60
(73.2%)

15
(25.0%)

0.81 55
(91.7%)

4
(6.7%)

1
(1.7%)

  De novo 22
(26.8%)

10
(45.5%)

1.77 7
(31.8%)

3
(13.6%)

12
(54.5%)

  Unknown origin 52
(38.8%)

16
(30.8%)

1.18 42
(80.8%)

6
(11.5%)

4
(7.7%)

Total 134
(100.0%)

41
(30.6%)

1.11 104
(77.6%)

13
(9.7%)

17
(12.7%)

Table 3  Information about gene pathogenicity

AR, Autosomal recessive, DD, Digenic dominant, AD, Autosomal dominant

Group One patient or family 
reported

Susceptibility Somatic ARorDD Only AD

  different genes
(n = 128)

14
(10.9%)

18
(14.1%)

6
(4.7%)

40
(31.3%)

63
(49.2%)

  Total number of genes 
(n = 202)

16
(7.9%)

22
(10.9%)

8
(4.0%)

51
(25.2%)

122
(60.4%)

  Inherited
(n = 81)

10
(12.3%)

9
(11.1%)

1
(1.2%)

19
(23.5%)

49
(60.5%)

  De novo
(n = 42)

2
(4.8%)

6
(14.3%)

4
(9.5%)

12
(28.6%)

22
(52.4%)

  Unknown origin
(n = 79)

4
(5.1%)

7
(8.9%)

3
(3.8%)

20
(25.3%)

51
(64.6%)

Table 4  Information and pregnancy outcome of different sizes of CNVs

CNV, copynumbervariation; HI, Haploinsufficiency; TOP, termination of pregnancy

Size of CNV Number of 
samples, n (%)

Average size of 
CNV (Mb)

Overlap of HI, n (%) Outcome of pregnancy, n (%)

Normal infants Abnormal 
pregnancy 
outcomes

Voluntary TOP

 < 1 Mb 98
(73.1%)

0.39 37 (37.8%) 82 (83.7%) 8 (8.2%) 8 (8.2%)

1-3 Mb 20
(14.9%)

2.01 2 (10.0%) 13 (65.0%) 2 (10.0%) 5 (25.0%)

 > 3 Mb 16
(11.9%)

4.46 2 (12.5%) 9 (56.3%) 3 (18.8%) 4 (25.0%)

Total 134
(100.0%)

1.11 41 (30.6%) 104 (77.6%) 13 (9.7%) 17 (12.7%)
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the highest, average size of the CNL was the biggest, and 
proportion of fetal adverse pregnancy outcome was the 
highest. At the same time, larger the CNL fragment, the 
higher the proportion of adverse pregnancy outcomes. 
Whether CNL overlaps the HI gene or region, the num-
ber of protein coding genes involved in genomic varia-
tion and genetic origin are important components of the 
pathogenicity classification of CNV [20, 27]. Generally, 
the larger the CNL fragment, the more protein coding 
genes involved. Therefore, if the CNL overlaps HI and 
the CNL fragment is large and de novo, the pathogenic-
ity classification of CNL tends to be pathogenic or likely 
pathogenic. According to information provided in the 
OMIM database, in addition to AD inheritance, some 
genes may have other ways of causing diseases, such as 
disease susceptibility, somatic variation, autosomal reces-
sive inheritance, or digenic inheritance. Some genes have 
been reported in only one patient or family, requiring 
further confirmation of the correlation with disease [28, 
29]. The results of this study showed that, in the de novo 
group, the proportion of genes with multiple genetic 
modes was higher than that in the inherited group. In 
brief, the genetic origin of variation, overlap of HI, size 
of CNL, and genetic mode may affect the pathogenicity 
of CNL.

At present, neither CNVseq nor CMA technology can 
determine the accurate breakpoint location of CNVs 
[30]. Among 134 fetuses with CNL, 36 samples had CNL 
only partially covers an AD gene, we cannot identify the 
specific region of the AD gene covered by the CNL and 
whether it involves a coding/functional region; conse-
quently, we cannot know whether this variation causes 
gene dysfunction and disease. However, if each sample is 
tested via other methods to determine the specific dele-
tion region of the AD gene and the effect of gene func-
tion, this will undoubtedly increase the cost of detection 
and prolong the time required to obtain the report, lead-
ing to even greater anxiety in pregnant women. In this 
study, the biological parents of 82 fetuses were compared: 
among them, 60 fetuses (73.2%) inherited CNL from a 
parent with normal phenotype. Through follow-up, we 
determined that only 4 fetuses (6.7%) had abnormal preg-
nancy outcomes: A2, A5, A11, and A12. However, their 
phenotypes were not consistent with those of patients 
diagnosed with diseases caused by the AD genes involved 
in CNL. The CNL of 22 fetuses (26.8%) were de novo 
and 3 fetuses (13.6%) had adverse outcomes (A1, A7, and 
A8), with only the phenotype of A1 consistent with the 
AD gene involved in CNL. The genetic origin of CNL in 
52 samples was unclear; 6 cases (11.5%) had adverse out-
comes, with only the phenotype of one fetus (A13) asso-
ciated with the disease caused by the AD gene involved 
in CNL. From the data shown in Table 2, we can see that 

compared with the unknown origin group, if the fetal 
CNL is inherited from the father or mother with normal 
phenotype, the proportion of normal pregnancy out-
comes is higher and the proportion of voluntary TOP 
is lower. However, if the fetal CNL is de novo, the pro-
portion of voluntary TOP is very high (12/22, 54.5%); 
we cannot know whether these fetuses would have had 
abnormal phenotypes, which may lead to the termination 
of many healthy fetuses. Therefore, in order to provide 
more reasonable medical advice—while saving time and 
lowering cost—it is recommended that the genetic origin 
of the CNL be confirmed to help evaluate its pathogenic-
ity. If CNL is genetic in origin, an analysis of the patho-
genicity of the AD gene by combining the phenotypes of 
parents and family members is warranted. In this study, 
the proportion of normal pregnancy outcomes in the 
inherited group was 91.7% (55/60). If the CNL is de novo, 
it is suggested that other methods be used to confirm 
the effect of the CNL on the function of the AD gene to 
help determine its pathogenicity, so as to provide more 
data-driven medical advice to pregnant women and their 
families.

Conclusions
The overall prognosis for fetuses without family history 
or structural abnormalities but with small CNL contain-
ing AD genes (< 10 Mb) detected during pregnancy, after 
excluding MMS and polymorphism, is good. Protocols 
that combine the CNL data of parents with the results 
of AD gene function tests are critical to inform medical 
consultation and decision rules.

Methods
Study patients
This study involved pregnant women who underwent 
amniocentesis for fetal CNVseq during their second or 
third trimester due to reasons, such as advanced mater-
nal age, increased risk of a screening test, ultrasound 
soft markers, or maternal request at West China Second 
University Hospital of Sichuan University from February 
2017 to June 2020. Fetuses with structural abnormalities, 
based on the ultrasonogram before amniocentesis and 
family history of a genetic condition, were excluded.

Amniotic fluid sample collection and DNA extraction
Based on routine collection procedures, 20 mL amniotic 
fluid was extracted and separated into 4 sterile centrifuge 
tubes containing 4  mL, 4  mL, 6  mL, and 6  mL, respec-
tively. CNVseq was performed using the 6-mL amniotic 
fluid samples and quantitative fluorescence PCR (QF-
PCR) was performed using one of the 4-mL amniotic fluid 
samples. The other two tubes of amniotic fluid were stored 
in a 2–8 ℃ refrigerator. According to the manufacturer’s 
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Fig. 2  The flowchart of the study
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instructions, DNA was extracted from amniotic fluid 
samples using a DNeasy Blood and Tissue Kit (Qiagen, 
Hilden, Germany). QF-PCR was performed using 21 tri-
somy/sex chromosome/polyploidy and 18 trisomy/13 tri-
somy/polyploidy detection kits (DaAn Gene, Guangzhou, 
China). When QF-PCR results indicated the presence of 
maternal cells in the samples, CNVseq and QF-PCR were 
repeated on the spare samples after cell culture.

CNVseq
DNA libraries were prepared using a Chromosome CNV 
Detection kit (Berry Genomics, Beijing, China) and 
subsequently sequenced on the Illumina NextSeq500 
sequencing platform using a NextSeq500 High Output kit 
(Illumina, San Diego, CA, USA) according to the manu-
facturer’s instructions. We compared the reads obtained 
by next generation sequencing with the GRCh37 reference 
genome and performed bioinformatics analysis to obtain 
the genomic copy number information of the samples as 
described previously [14]. In this study, the pathogenicity 
of CNVs > 100 kb was analyzed. The clinical significance of 
the CNVs was interpreted according to the technical stand-
ards for the interpretation and reporting of constitutional 
CNVs established by joint consensus of the American Col-
lege of Medical Genetics and Genomics (ACMG) and the 
Clinical Genome Resource (ClinGen) [31]. After exclud-
ing MMS and polymorphisms (> 1% in the general popu-
lation), CNL (the copy number is 1) involving AD genes 
with fragment sizes < 10 Mb were included in the present 
study. CNVs were confirmed using array-based compara-
tive genomic hybridization (aCGH) or a repeat of CNVseq. 
aCGH was performed using a CGX v2 Oligo aCGH Kit 
(Agilent Technologies, Santa Clara, CA, USA). The micro-
array was scanned using the Agilent SureScan Microarray 
Scanner (Agilent). Data were extracted using the Agilent 
CytoGenomics software (Agilent) and analyzed using the 
Genoglyphix Analysis software (PerkinElmer, Waltham, 
MA, USA).

Detection of parent‑of‑origin
When CNL involving AD genes was identified in the 
amniotic fluid sample, we recommended that the biologi-
cal parents of the fetus undergo CNVseq to determine 
the origin of the fetal CNL; 2  mL of peripheral blood 
was collected from each parent and anticoagulated with 
EDTA. DNA extraction and CNVseq methods were per-
formed as described for the amniotic fluid samples.

Follow‑up of pregnancy outcome
One year after amniocentesis, the researchers con-
tacted the mother or father of the fetus for follow-up. 
The information discussed during the inquiry included 
fetal ultrasound results; pregnancy complications; 

pregnancy loss; TOP and the causes; date and mode of 
delivery; weight and length of the newborn; the Apgar 
score; physical appearance of the newborn (i.e., nor-
mal/abnormal); feeding conditions after birth; and 
examination results of pediatric outpatient services. 
The flowchart of the study is shown in Fig. 2.
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